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a b s t r a c t

In this work, the application of response surface and neural network models in predicting and optimizing
the preparation variables of RHA/CaO/CeO2 sorbent towards SO2/NO sorption capacity was investigated.
The sorbents were prepared according to central composite design (CCD) with four independent variables
(i.e. hydration period, RHA/CaO ratio, CeO2 loading and the use of RHAraw or pretreated RHA600◦C as the
starting material). Among all the variables studied, the amount of CeO2 loading had the largest effect.
The response surface models developed from CCD was effective in providing a highly accurate prediction
for SO2 and NO sorption capacities within the range of the sorbent preparation variables studied. The
ice husk ash
ir pollution
SM model
N model

prediction of CCD experiment was verified by neural network models which gave almost similar results
to those determined by response surface models. The response surface models together with neural
network models were then successfully used to locate and validate the optimum hydration process
variables for maximizing the SO2/NO sorption capacities. Through this optimization process, it was found
that maximum SO2 and NO sorption capacities of 44.34 and 3.51 mg/g, respectively could be obtained
by using RHA/CaO/CeO2 sorbents prepared from RHAraw with hydration period of 12 h, RHA/CaO ratio of

8.95%
2.33 and CeO2 loading of

. Introduction

Among the several air pollutants that contaminate our planet,
Ox and NOx have received special attention due to the fact that
hese two pollutants have toxic and acidic characteristics. SOx and
Ox, which are mainly resulted from the combustion of fossil/solid

uels, have been linked to the formation of acid rain and many other
ndesirable environmental hazards [1]. In general, SOx and NOx in
ue gases consists of more than 98% of sulfur dioxide (SO2) [2] and
ore than 90% of nitric oxide (NO) [3]. Most of the researchers

re still focused on the removal of SO2 and NO separately. Only
n the last two decades, many processes have been developed for
ombined removal SO2/NO technology in a complete single pro-
ess which has the potential to reduce the cost of environmental

ollution control technology.

Unfortunately, only limited study on the simultaneous removal
f SO2 and NO using dry method were reported at low tempera-
ure. In particular, the use of sorbent prepared from agricultural
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waste-derived siliceous materials, such as rice husk ash (RHA) is
also scarcely reported. RHA is produced from the burning of rice
husk, which is abundantly available through the rice milling pro-
cess in rice-producing countries like China, India and Malaysia. In
Malaysia alone, it is estimated that more than 80 thousand tones
of RHA is produced annually [4,5]. Previously, we have reported
the sorption characteristics of SO2 over RHA/CaO sorbents [6–9]. It
was found that the RHA/CaO ratio, type of RHA, amount of addi-
tive and hydration period used in the preparation step significantly
influenced the SO2 sorption capacity of the RHA/CaO sorbent. It
was also found that this RHA/CaO sorbent was unable to remove
NO gases. The simultaneous removal of SO2 and NO can only be
obtained by impregnating RHA/CaO sorbent with various metal
oxides and the RHA/CaO sorbent incorporated with cerium dioxide
(CeO2) displayed the highest SO2/NO sorption capacities [10].

Despite several reports on the simultaneous SO2 and NO
removal using dry method and the effect of sorbent preparation

variables on the sorbent sorption capacity, there are no studies
reported in the literature on the parameters optimization of this
kind of processes. Higher sorption capacity of the sorbent can only
be obtained, if all parameters are optimized. Recently, a number of
statistical experimental designs with response surface methodol-

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:chrahman@eng.usm.my
dx.doi.org/10.1016/j.jhazmat.2010.01.070
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Table 1
Design matrix of the four variables with the experimental and predicted values of sorbent sorption capacity.

Sample code Hydration process variables (actual value; coded value; normalized value) yS (mg/g) yN (mg/g)

x1 x2 x3 x4 Exp.a Predicted Exp.a Predicted

D1 12; −1; 0.25 1.5; −1; 0.25 5; −1; 0.25 RHAraw; −1; 0 28.31 (0.22) 27.67 2.91 (0.67) 2.43
D2 12; −1; 0.25 1.5; −1; 0.25 15; 1; 0.75 RHAraw; −1; 0 53.19 (0.85) 53.08 3.72 (0.85) 3.84
D3 12; −1; 0.25 3.5; 1; 0.75 5; −1; 0.25 RHAraw; −1; 0 25.74 (0.15) 27.56 1.76 (0.40) 1.91
D4 12; −1; 0.25 3.5; 1; 0.75 15; 1; 0.75 RHAraw; −1; 0 46.33 (0.67) 47.62 3.97 (0.91) 3.99
D5 24; 1; 0.75 1.5; −1; 0.25 5; −1; 0.25 RHAraw; −1; 0 41.18 (0.54) 40.27 3.01 (0.69) 2.85
D6 24; 1; 0.75 1.5; −1; 0.25 15; 1; 0.75 RHAraw; −1; 0 48.05 (0.72) 51.74 4.22 (0.97) 4.25
D7 24; 1; 0.75 3.5; 1; 0.75 5; −1; 0.25 RHAraw; −1; 0 44.61 (0.63) 45.52 2.96 (0.68) 2.32
D8 24; 1; 0.75 3.5; 1; 0.75 15; 1; 0.75 RHAraw; −1; 0 49.76 (0.76) 51.64 3.97 (0.91) 4.40
D9 18; 0; 0.5 2.5; 0; 0.5 0; −2; 0 RHAraw; −1; 0 19.73 (0.00) 22.27 0.00 (0.00) 0.32
D10 18; 0; 0.5 2.5; 0; 0.5 20; 2; 1 RHAraw; −1; 0 54.05 (0.87) 53.80 4.37 (1.00) 3.81
D11 18; 0; 0.5 0.5; −2; 0 10; 0; 0.5 RHAraw; −1; 0 32.60 (0.33) 34.28 3.21 (0.74) 3.32
D12 18; 0; 0.5 4.5; 2; 1 10; 0; 0.5 RHAraw; −1; 0 34.32 (0.37) 34.07 2.96 (0.68) 2.94
D13 6; −2; 0 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 42.90 (0.59) 40.23 2.91 (0.67) 3.49
D14 30; 2; 1 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 59.20 (1.00) 56.86 4.22 (0.97) 4.32
D15 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 53.19 (0.85) 51.80 3.92 (0.90) 3.90
D16 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 52.33 (0.83) 51.80 3.87 (0.89) 3.90
D17 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 53.19 (0.85) 51.80 3.92 (0.90) 3.90
D18 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 53.19 (0.85) 51.80 3.87 (0.89) 3.90
D19 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 53.19 (0.85) 51.80 3.92 (0.90) 3.90
D20 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHAraw; −1; 0 52.33 (0.83) 51.80 3.92 (0.90) 3.90
D21 12; −1; 0.25 1.5; −1; 0.25 5; −1; 0.25 RHA600◦C; 1; 1 31.74 (0.30) 30.63 2.71 (0.62) 2.37
D22 12; −1; 0.25 1.5; −1; 0.25 15; 1; 0.75 RHA600◦C; 1; 1 47.19 (0.70) 49.72 3.36 (0.77) 3.36
D23 12; −1; 0.25 3.5; 1; 0.75 5; −1; 0.25 RHA600◦C; 1; 1 29.17 (0.24) 26.55 1.86 (0.43) 1.84
D24 12; −1; 0.25 3.5; 1; 0.75 15; 1; 0.75 RHA600◦C; 1; 1 41.18 (0.54) 40.28 3.42 (0.78) 3.51
D25 24; 1; 0.75 1.5; −1; 0.25 5; −1; 0.25 RHA600◦C; 1; 1 42.04 (0.57) 43.23 2.76 (0.63) 2.78
D26 24; 1; 0.75 1.5; −1; 0.25 15; 1; 0.75 RHA600◦C; 1; 1 50.62 (0.78) 48.38 3.57 (0.82) 3.77
D27 24; 1; 0.75 3.5; 1; 0.75 5; −1; 0.25 RHA600◦C; 1; 1 47.19 (0.70) 44.52 2.56 (0.59) 2.25
D28 24; 1; 0.75 3.5; 1; 0.75 15; 1; 0.75 RHA600◦C; 1; 1 43.76 (0.61) 44.30 3.97 (0.91) 3.92
D29 18; 0; 0.5 2.5; 0; 0.5 0; −2; 0 RHA600◦C; 1; 1 26.60 (0.17) 26.41 0.00 (0.00) 0.46
D30 18; 0; 0.5 2.5; 0; 0.5 20; 2; 1 RHA600◦C; 1; 1 48.05 (0.72) 45.28 3.11 (0.71) 3.12
D31 18; 0; 0.5 0.5; −2; 0 10; 0; 0.5 RHA600◦C; 1; 1 38.61 (0.48) 36.06 2.96 (0.68) 3.05
D32 18; 0; 0.5 4.5; 2; 1 10; 0; 0.5 RHA600◦C; 1; 1 27.45 (0.20) 27.91 2.61 (0.60) 2.67
D33 6; −2; 0 2.5; 0; 0.5 10; 0; 0.5 RHA600◦C; 1; 1 35.18 (0.39) 38.05 3.47 (0.79) 3.21
D34 30; 2; 1 2.5; 0; 0.5 10; 0; 0.5 RHA600◦C; 1; 1 53.19 (0.85) 54.67 3.82 (0.87) 4.04
D35 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHA600◦C; 1; 1 48.05 (0.72) 49.61 3.67 (0.84) 3.63
D36 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHA600◦C; 1; 1 48.90 (0.74) 49.61 3.67 (0.84) 3.63
D37 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHA600◦C; 1; 1 48.90 (0.74) 49.61 3.62 (0.83) 3.63
D38 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHA600◦C; 1; 1 48.05 (0.72) 49.61 3.67 (0.84) 3.63
D39 18; 0; 0.5 2.5; 0; 0.5 10; 0; 0.5 RHA600◦ ; 1; 1 48.90 (0.74) 49.61 3.67 (0.84) 3.63
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a Data in parenthesis are normalized values: x1 (hydration period), x2 (RHA/CaO
apacity).

gy (RSM) have been employed for studying complex processes
nd to determine the optimum process parameters [8,11–14].
nother approach, artificial neural network (NN), which is a non-
tatistical method, has also been successfully applied to estimate
nd model chemical and biochemical processes [15–18] and as
ell as in the industrial flue gas purification process [19–22]. NN

ccomplishes its modeling capabilities through a process known
s training. There are many different approaches to train the NN.
mong all the training methods, backpropagation (BP) algorithm

with Levenberg–Marquardt method) is the most widely adopted
ue to its ability to learn complicated multi-dimensional mappings.
19,23–25]. Most of NN studies are applied by means of sufficient
r large training data. One important issue in developing NNs from
ata obtained from statistically based experiment design is the size
f the data set which usually produces limited experimental data.
nfortunately, when a small number of data is available, one can-
ot expect more satisfactory training of the network and cannot
ccurately evaluate the network performance.

Therefore in this study, RSM was applied to examine the sig-
ificant preparation variables (independent variables) affecting

HA/CaO/CeO2 sorbent sorption capacity towards SO2/NO (depen-
ent variables) as well as to obtain the optimized RHA/CaO/CeO2
orbent. Based on previous study [6–10], three numerical variables
i.e. hydration period, RHA/CaO ratio and CeO2 loading) and one
ategorical variable (i.e. the use of raw RHA or pretreated RHA at
C

C; 1; 1 48.90 (0.74) 49.61 3.67 (0.84) 3.63

), x3 (CeO2 loading), x4 (type of RHA), yS (SO2 sorption capacity), yN (NO sorption

600 ◦C as the starting material) have been selected as the sorbent
preparation variables. Apart from that, NN model was used to verify
the RSM experiment in predicting and optimizing sorbent sorption
capacity. In this regard, this work will demonstrate a method to
develop a NN to model, predict and optimize the RHA/CaO/CeO2
sorbent sorption capacity using limited experimental data that is
distributed into training, testing and validating data.

2. Materials and methods

2.1. Preparation of RHA/CaO/CeO2 sorbent

In this work, two types of RHA were used in the preparation
of RHA-based sorbent, i.e. raw RHA and pretreated RHA at 600 ◦C,
hereinafter are referred to as RHAraw and RHA600◦C, respectively.
The sorbents were prepared using RHA, CaO (BDH Laboratories)
and Ce(NO3)3·6H2O (98%, Fluka). The raw RHA was collected from
Kilang Beras & Minyak Sin Guan Hup Sdn. Bhd., Nibong Tebal,
Malaysia. Prior to use, the RHA was sieved to produce less than
200 �m particle size. In order to obtain RHA600◦C from raw RHA, the

latter was further combusted in a furnace (Carbolite RWF 1200) at
a temperature of 600 ◦C for 4 h (heating rate of 5 ◦C/min).

Two steps sorbent preparation were used. Water hydration
method [26] was used to prepared RHA/CaO sorbent based on the
optimum hydration conditions reported in our previous studies
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7]. Then, pore volume impregnation method [27] was separately
mployed via thermal decomposition of metal nitrate to obtain
HA/CaO/CeO2 sorbent. The sorbent obtained in powder form was
hen pelletized, crushed and sieved in order to achieve the required
article size (250–300 �m) for the sorption capacity/activity test
owards SO2/NO by subjecting it to simulated flue gas.

.2. Design, statistical analysis, model fitting and optimization

Design Expert software version 6.0.6 (STAT-EASE Inc., Min-
eapolis, MN) was used to generate the experimental designs,
tatistical analysis, regression model and to optimized the sor-
ent preparation variables. Central composite design (CCD) with a
uadratic model and ˛ = 2 coupled with response surface method-
logy (RSM) was chosen in this study [28]. The sorbent preparation
ariable consists of three numerical variables, i.e. hydration period,
1 (6–30 h), RHA/CaO ratio, x2 (0.5–4.5 g/g), CeO2 loading, x3
0–20%), and one categorical variable, i.e. the use of RHAraw or
HA600◦C as the starting material (x4). A total of 40 different com-
inations were performed in random order according to the CCD
onfiguration as shown in Table 1. Three replications were carried
ut for all design points except the center point. The resulting sor-
ents were tested for SO2/NO sorption capacity and the results
re also presented in Table 1. The SO2 and NO sorption capac-
ties of RHA/CaO/CeO2 sorbents were represented by yS and yN,
espectively. The data obtained were then fitted to the following
econd-order polynomial equation to create response surfaces.

= ˇ0 +
n∑

i=1

ˇixi +
n∑

i=1

ˇiix
2
i +

n−1∑

i=1

n∑

j=i+1

ˇijxixj (1)

here y is the predicted responses, ˇ the offset term (regression
oefficient), x the coded value of the variable, n the number of
ariable, i and j are the linear and quadratic coefficients, respec-
ively. The significance of the second-order model as shown in Eq.
1) was evaluated by analysis of variance (ANOVA). The insignifi-
ant coefficient was eliminated after the F (Fisher)-test and the final
odel was obtained. The model was then used to optimize the sor-

ent sorption capacity for all the parameters studied. Additional
xperiments were also carried out to verify the predicted optimize
onditions.

.3. Activity test (SO2/NO sorption study)

The activity of the sorbent towards SO2 or NO is expressed by
O2 or NO sorption capacity and is defined by the weight of SO2
r NO captured from the flue gas per gram sorbent [29,30]. The
chematic diagram and details of the activity study is presented
lsewhere [6,12]. The sorbent (0.5 g) was dispersed on the borosil-
cate glass wool (0.05 g) in the center of the reactor. The simulated
ue gas (150 ml/min) was normally composed of 2000 ppm SO2,
00 ppm NO, 10% O2, 50% H2O and N2 as a balance was subse-
uently passed through the sorbent at a reaction temperature of
7 ◦C. Prior to each run, the sorbent bed was humidified for 15 min
y passing N2 gas through the humidification system with 50% rel-
tive humidity. The concentration of flue gas was measured using
Portable Flue Gas Analyzer IMR 2800P before and after the sorp-

ion process. The amount of SO2/NO captured by the sorbent was
valuated from the time the sorbent could maintain 100% removal
f SO2/NO until it shows negligible activity. Every experimental

un was repeated at least three times to increase the precision of
he results, and only the average value was reported throughout
his study. The repeatability of the experimental data was found to
e sufficiently high with relative error between repeated runs less
han 5%.
Materials 178 (2010) 249–257 251

2.4. Sorbent characterization

The chemical composition of raw RHA and metal loading of
the RHA-based sorbent were analyzed using Rigaku RIX 3000 X-
ray Fluorescence (XRF) spectrometer. The chemical composition of
RHAraw is 68.0% SiO2, 2.30% K2O, 1.20% P2O5, 0.71% MgO, 0.59% CaO,
0.32% SO3, 0.32% Cl2O, 0.16% Al2O3, 0.40% others and 26.0% loss on
ignition (LOI). The pretreated RHA600◦C had the following compo-
sition: 89.0% SiO2, 2.60% K2O, 1.50% P2O5, 0.86% MgO, 0.68% CaO,
0.40% SO3, 0.26% Cl2O, 0.21% Al2O3, 0.29% others and 4.20% LOI. The
specific surface area, total pore volume and average pore diame-
ter of raw materials and the sorbents were determined using BET
method on a Quantachrome Autosorb analyzer. X-ray diffraction
(XRD) spectrum was recorded on a Siemens D5000 X-ray diffrac-
tometer to determine the phases present in the sorbent in the range
of diffraction angle (2�) 10–70◦ at a sweep rate of 1◦ min−1.

2.5. Neural network

Neural network (NN) was used as an alternative method to
predict the sorbent sorption capacity based on the experimental
results obtained from design of experiments. This is mainly aimed
to compare the prediction obtained using central composite design
approach. In this study, a feedforward network with one hidden
layer was used. The topology of the NN developed was designated
as 4-h-2 (four input neurons representing the four hydration pro-
cess variables, h hidden neurons in a single hidden layer and two
output neurons representing the SO2 and NO sorption capacities).
Trial and error search method based on the smallest sum of square
error (SSE) and highest coefficient of determination (R2) was used
in order to determine the optimum number of hidden neurons (h).
SSE was used as the error function to measure the performance of
the NN according to the following equation.

SSE = ˙
i=1

(yi,e − yi,p)2 (2)

where yi,e represent experimental data, yi,p the NN prediction and
i is an index of data. A series of NN topologies with a number of
hidden neurons varied from 3 to 10 was constructed, trained, tested
and validated using the experimental data set in Table 1. The data
sets were divided into training, testing and validation subsets, each
of which contains 14 samples (D1, D4, D7, . . . D40), 13 samples (D2,
D5, D8, . . . D38) and 13 samples (D3, D6, D9, . . . D39), respectively.
A sigmoidal transfer function was used for the hidden neurons and
is given by

f (x) = 1
1 + e−x

(3)

The linear transfer function was used for the input and output
neurons and is given by

f (x) = x (4)

All NNs were trained using the backpropagation algorithm
(Levenberg–Marquardt method). The primary objective of training
is to minimize the error function (SSE) by searching for a set of con-
nection weights and biases that causes the NN to produce outputs
that are equal or near to target (predicted) values. Prior to training,
all data was normalized in the range of 0 (new xmin) to 1 (new xmax)
to obtain a new scale value (xi−n) by the following equation

xi−n = xi − xmin

xmax − xmin
(new xmax − new xmin) + new xmin (5)
where xi is the input/output data (data of independent and depen-
dent variables), xmax and xmin are the maximum and minimum
values of the particular variable, respectively.

In order to generate all of these NN modeling and analysis, com-
mercial software of MATLAB version 6.5 (The Mathworks Inc.) with
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Table 2
ANOVA for the regression model equation and coefficients.

Source Sum of squares DF Mean of square F-test Prob > F

yS yN yS yN yS yN yS yN

Model 3594.00 34.32 13 276.46 2.64 63.29 (70.01)a 36.76 (57.61)a <0.0001b <0.0001b

x3 1270.30 18.93 1 1270.30 18.93 290.80 (297.11)a 263.51 (257.21)a <0.0001b <0.0001b

x2 34.99 0.28 1 34.99 0.28 8.01 (8.18)a 3.95 (3.86)a 0.0089b (0.0081)a 0.0575 (0.0586)a

x1 552.63 1.37 1 552.63 1.37 126.51 (129.26)a 19.12 (18.67)a <0.0001b 0.0002b (0.0001)a

x4 47.86 0.75 1 47.86 0.75 10.96 (11.19)a 10.43 (10.18)a 0.0027b (0.0024)a 0.0033b (0.0032)a

x2
3 595.59 10.92 1 595.59 10.92 136.35 (139.30)a 152.03 (150.89)a <0.0001b <0.0001b

x2
2 976.51 1.99 1 976.51 1.99 223.55 (228.40)a 27.78 (26.45)a <0.0001b <0.0001b

x2
1 33.33 0.05 1 33.33 0.05 7.63 (7.79)a 0.75 0.0104b (0.0095)a 0.3932

x2x3 28.75 0.46 1 28.75 0.46 6.58 (6.73)a 6.40 (6.25)a 0.0164b (0.0152)a 0.0178b (0.0179)a

x1x3 194.37 0.04 1 194.37 0.04 44.50 (45.46)a 0.56 <0.0001b 0.4602
x3x4 80.07 0.34 1 80.07 0.34 18.33 (18.73)a 4.78 (4.67)a 0.0002b 0.0380 (0.0386)a

x1x2 28.75 0.16 1 28.75 0.16 6.58 (6.73) a 2.25 0.0164b (0.0152)a 0.1459
x2x4 31.49 0.01 1 31.49 0.01 7.21 (7.37)a 0.07 0.0125b (0.0114)a 0.7931
x1x4 1.86 0.15 1 1.86 0.15 0.43 2.12 0.5194 0.1569
Residual 113.58 1.87 26 4.37 0.07 – – – –
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a Value after discarding the insignificant term; DF = degree of freedom; x1 (hydr
apacity), yN (NO sorption capacity).

b Significant term.

eural network toolbox was used. A modified program written in
his MATLAB programming language from Ahmad and Zhang [25]
as implemented.

. Results and discussion

.1. Response surface model

The experimental results for studying the effect of hydration
eriod (x1), RHA/CaO ratio (x2), CeO2 loading (x3) and RHA type
x4) are presented in Table 1 along with the predicted SO2 and NO
orption capacities. From the data presented, sorbents D14 and D9
xhibited the highest and lowest SO2 sorption capacities at 59.2 and
9.73 mg/g, respectively. At the same time, sorbent D10 displayed
he highest NO sorption capacity at 4.37 mg/g, and sorbent D9 was
ot able to sorb NO. Inspection of the data tabulated in Table 1
hows that the sorbent preparation variables have a significant
ffect on the SO2/NO sorption capacity of the sorbent. Using mul-
iple regression analysis, the responses (SO2/NO sorption capacity)
btained in Table 1 was correlated with the four sorbent prepara-
ion variables using the mathematical model as shown in Eq. (1).
he final predictive equation obtained for SO2 sorption capacity
yS) of sorbents prepared from RHAraw and RHA600◦C (symbolized
y yS-1 and yS-2, respectively) are given in Eqs. (6) and (7) in term
f actual factor, respectively. For NO sorption capacity (yN) of the
orbents prepared from RHAraw and RHA600◦C (symbolized by yN-1
nd yN-2, respectively), the final equations are given in Eqs. (8) and
9), respectively.

S-1 = −42.493 + 2.110x1 + 20.639x2 + 7.091x3 − 0.023x2
1

− 4.407x2
2 − 0.138x2

3 + 0.223x1x2 − 0.116x1x3 − 0.268x2x3

(6)

S-2 = −33.394 + 2.110x1 + 18.655x2 + 6.458x3 − 0.023x2
1

− 4.407x2
2 − 0.138x2

3 + 0.223x1x2 − 0.116x1x3 − 0.268x2x3

(7)
N-1 = −0.420 + 0.035x1 + 0.528x2 + 0.457x3 − 0.192x2
2

− 0.018x2
3 + 0.034x2x3 (8)
period), x2 (RHA/CaO ratio), x3 (CeO2 loading), x4 (type of RHA), yS (SO2 sorption

yN-2 = −0.280 + 0.035x1 + 0.528x2 + 0.416x3 − 0.192x2
2

− 0.018x2
3 + 0.034x2x3 (9)

From the data trend shown in Table 1, it was found that SO2 and
NO sorption capacities increased with the increase in CeO2 load-
ing up to maximum range of 15% for both type of RHA sorbent
prepared. By increasing the amount of CeO2, more active site was
formed on the RHA/CaO sorbent to react with SO2 and NO during
the sorption process. However, it was found that the increment of
CeO2 loading to 20% (outside the range) does not have much effect
on the SO2 and NO sorption capacities as compared to 15% CeO2
loading. This can be noticed at sorbent D10 prepared from RHAraw

and sorbent D30 prepared from RHA600◦C. This shows that sorption
capacity of the RHA/CaO sorbent could not be further improved
by excessive loading of CeO2. This might be due to the formation
of excess CeO2 that will mainly deposit on the external surface
of RHA/CaO sorbent forming pure CeO2 which has low sorption
capacity [31,32]. In addition, monolayer capacity of RHA/CaO sor-
bent might be exceeded at higher CeO2 loading [33], which can
form CeO2 clusters that can block small pores of the RHA/CaO sor-
bent. This could reduce the accessibility of SO2/NO molecules to the
active CeO2 coated/dispersed on the RHA/CaO sorbent. To further
support this result, analysis of variance (ANOVA) was carried out
for each response for the second order polynomial equations and
results for the linear, quadratic and interaction terms are presented
in Table 2. Hydration period (x1) was found to have significant
effect, but CeO2 loading (x3) has the largest effect (among the indi-
vidual variable studied) on both SO2 and NO sorption capacities
due to the highest F-value. In contrast, RHA/CaO ratio (x2) and type
of RHA (x4) has almost similar effect, but the effect were less pro-
nounced (not significant) for both SO2 and NO sorption capacities.
Furthermore, the interaction between hydration period (x1) and
CeO2 loading (x3) was found to significantly effect SO2 sorption
capacity due to relatively high F-value as compared to other inter-
action terms. Additionally, RHA/CaO ratio (x2) and CeO2 loading
(x3) have about the same interaction for both SO2 and NO sorption
capacities.

Based on the statistical analysis, the proposed model was ade-

quate, possessing no significant lack of fit and with very satisfactory
values of the R2 for all the responses. The R2 values for SO2 sorp-
tion capacity (yS) and NO sorption capacity (yN) were 0.969 and
0.937, respectively, after omitting the insignificant effects. In order
to verify the prediction of CCD experiment, neural network (NN)
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ig. 1. Selection of optimal number of neurons in the hidden layer resulted from a
eries of NN topologies.

odel was used to predict the SO2 and NO sorption capacities in
he following section.

.2. Neural network (NN) modeling

The performance of the NNs topology to estimate the training
ata set was evaluated in term of the SSE (Eq. (2)) and R2. Fig. 1
hows the effect of number of hidden neurons in the hidden layer on
he NN error (SSE) and R2 of the training data sets. It can be observed
hat the optimum number of hidden neurons (that give minimum
SE and high R2 of 0.004 and 0.990, respectively) was obtained
sing five hidden neurons for SO2 sorption capacity. For NO sorp-
ion capacity, six hidden neurons were observed to give minimum
SE of 0.024 and high R2 of 0.877. The result also shows that the
etworks with more than six hidden neurons did not improve the
tting criterions for both SO2 and NO sorption capacities. Therefore

t was decided to use a network with six hidden neurons. Based on
he approximation of SSE function and R2, a NN with 4-6-2 struc-
ure was implemented in this study for the prediction of SO2 and
O sorption capacities.

The testing and validation results for the particular NN model
or the prediction of SO2 and NO sorption capacities (after rescal-
ng) are shown in Fig. 2. It can be observed that most points are
earby the line adjustment which means that the values deter-
ined experimentally are similar to those determined by the NN
odel. The R2 values for testing and validation of SO2 sorption

apacity (Fig. 2a) were 0.997 and 0.853, respectively. Concurrently,
he R2 values for testing and validation of NO sorption capacity
Fig. 2b) were 0.994 and 0.916, respectively. Although the validation
esults were found to give lower R2 values as compared to testing
esults, however, it still provide an accurate prediction for SO2 and
O sorption capacities of the RHA/CaO/CeO2 sorbents within the

ange of the sorbent preparation variables studied. Moreover, the
esults in Fig. 2 establish the effectiveness of NNs as a powerful
omputational tool for modeling small data sets obtained from the
xperimental results.

.3. Attaining optimum condition

Based on the results obtained from CCD experiment and NN
odeling for RHA/CaO/CeO2 sorbents, the level of significant vari-
bles were further optimized using the point prediction function (or
egression model) given by Design Expert software. Other than that,
ptimization was also carried out to determine whether the use of
HAraw or RHA600◦C (in the preparation of RHA/CaO/CeO2 sorbents)

s more favorable in producing sorbent with a higher SO2/NO sorp-
Fig. 2. NN model results for (a) testing and validation of SO2 sorption, and (b) testing
and validation of NO sorption.

tion capacity. In order to locate the optimum hydration process
variable that could produce RHA/CaO/CeO2 sorbents with the high-
est SO2/NO sorption capacity, the variables objective was chosen
as follows. Although RHA/CaO ratio (x2) and type of RHA (x4) were
found not to have significant effect, but both were still included in
the optimization procedure as in our previous study, both parame-
ters were found to have significant effect [7,8]. For hydration period
(x1) and CeO2 loading (x3), although these two variables have sig-
nificant effect, however, when it comes to practical application of
this technology, the value used for these two variables must always
be at the lowest for economical feasibility. Thus in the optimiza-
tion work, these variables (x1 and x3) were chosen at the minimum
range. Then, the numerical optimization feature in Design Expert
software was used to search for a combination of variables levels
that simultaneously satisfy the requirements placed on each of the
responses and variables.

Figs. 3 and 4 show the contour plots for predicting maximum
SO2 and NO sorption capacities for RHA/CaO/CeO2 sorbents pre-
pared from RHAraw and RHA600◦C, respectively under optimum
conditions selected. The RHA/CaO/CeO2 sorbents prepared from
RHAraw and RHA600◦C hereinafter are labeled to as sorbent E1 and
E2, respectively. It was predicted that a maximum SO2 and NO sorp-
tion capacities of 44.34 and 3.51 mg/g, respectively can be obtained
for sorbent E1 within the range of the hydration process variables
investigated. The hydration conditions that result in the maximum
sorption capacities are hydration period (x1) of 12 h, RHA/CaO ratio
(x2) of 2.33 and CeO2 loading (x3) of 8.95%. However, lower SO2 and

NO sorption capacities of 42.21 and 3.19 mg/g, respectively were
obtained if sorbent E2 were prepared from RHA600◦C using hydra-
tion period (x1) of 12 h, RHA/CaO ratio (x2) of 2.15 and CeO2 loading
(x3) of 8.43%.
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Fig. 3. Contour plot of (a) SO2 and (b) NO sorption capacities as a funct

In order to verify the prediction given by CCD (regression)
odel, sorbents E1 and E2 were prepared under the condition pre-

icted. Three repeated experiments were then carried out for SO2
nd NO sorption test for both sorbents prepared. The results of
xperiments and the error between the experimental and predicted
by regression model) values are presented in Table 3. The experi-

ental average values of 46.04 mg SO2/g sorbent and 3.67 mg NO/g
orbent were obtained for sorbent E1. These experimental findings
ere in close agreement with the model prediction as the error

etween the experimental and predicted values was found to be
.84% and 4.45%, respectively for SO2 and NO sorption capacities.
imilarly, the results obtained for sorbent E2 shows that the model
eveloped were also successful in correlating the hydration process
ariables to SO2 and NO sorption capacities with a high degree of
ccuracy.

To further verify the predictive capability of the CCD models,

gain NN model (with 4-6-2 structure) that has been previously
eveloped was used to predict the maximum SO2 and NO sorption
apacities under optimum hydration process conditions. The pre-
ious data sets (Table 1) were used to train the NN model using

Fig. 4. Contour plot of (a) SO2 and (b) NO sorption capacities as a function of R
RHA/CaO ratio and CeO2 loading for sorbent E1 prepared from RHAraw.

the backpropagation algorithm (Levenberg–Marquardt method),
whereby the two new experimental data sets were incorporated
within the validation subsets. In other words, there are two new
data sets in the validation subsets, while other data sets (in the
training and testing subset) will remain the same. The SO2 and NO
sorption capacities values predicted by NN model is also presented
in Table 3. According to NN model, a maximum achievable SO2 and
NO sorption capacities of 47.75 and 3.83 mg/g were obtained for
sorbent E1 within the range experimentally investigated. At the
same time, NN model also provided predictions of the SO2 and NO
sorption capacities for sorbent E2 very close to those measured
experimentally. It is evident that NN predictions gave an excel-
lent agreement with the experimental data as the calculated error
between them is less than 5%. This also shows that the NN approach
presented in this study can be exploited as an alternative to the
conventional quadratic polynomials model for representing data

derived from statistically designed experiment.

From the optimization results shown in Table 3, it is obvious that
sorbent E1 prepared from RHAraw gives a higher SO2 and NO sorp-
tion capacities compared to sorbent E2 prepared from RHA600◦C.

HA/CaO ratio and CeO2 loading for sorbent E2 prepared from RHA600◦C.
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Table 3
Comparison of the optimized results, experimental results and predicted by NN model under optimization criteria for prepared RHA/CaO/CeO2 sorbents.

RHA-based sorbents Experimental (mg/g) Predicted by CCD (mg/g) Errora (%) Predicted by NN (mg/g) Errora (%)

SO2 sorption capacity (yS)
E1 46.33 44.34 3.84 47.75 −3.58

45.47
46.33

E2 42.90 42.21 2.98 44.88 −3.14
43.76
43.76

NO sorption capacity (yN)
E1 3.72 3.51 4.45 3.83 −4.34

3.62
3.67

E2 3.31 3.19 4.96 3.47 −3.64
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3.36
3.36

a Average value.

hese results suggested that apart from CeO2 (metal oxide) loading,
he content of silica also become an important parameter affect-
ng the sorption capacity of the sorbents prepared from RHA. As
eported from previous study, the content of silica in the sorbent
as closely related to the sorption activity [26,29,34,35] whereby

O2 and NO sorption capacities markedly increased with the con-
ent of silica in the siliceous-calcium-based sorbents. However,
n this study sorbents prepared with higher silica content (sor-
ents E2) displayed contradictory results. This might be due to the
hase of the active component (Si–Ca complexes) particularly silica
hases in the sorbent that was altered after the calcination pro-
ess. In the process of synthesizing sorbents E2, the sorbent has
een calcined at 600 ◦C for twice, i.e. during the pre-treatment of
aw RHA and after impregnation process. As reported from pre-
ious researchers [36–38], the silica content in RHA is a thermally
ensitive compound. Although it was reported from previous study
8] that heating raw RHA at 600 ◦C did not change the structure of
ilica from amorphous to crystalline, however, it is believed that
he active component of silica phases in the sorbent E2 has been
ltered, which then gives low sorption capacities towards SO2 and
O as compared with sorbent E1.

In order to confirm this presumption, sorbents E1 and E2 were
ubjected to X-ray diffraction (XRD) analysis. For comparison,
orbents D14 (prepared from RHAraw) and D34 (prepared from
HA600◦C) from Table 1 (under the same hydration process vari-
bles) were also analyzed using XRD. The XRD pattern shown in
ig. 5 illustrated that the diffraction lines of silica (2� ∼ 22◦) and cal-
ite (2� ∼ 29.4◦) phases on the sorbent E1 and D14 prepared from
HAraw are more pronounced than that of the sorbent E2 and D34
repared from RHA600◦C. This result was analogous to previous XRD
attern of RHA/CaO/CeO2 sorbents prepared from RHAraw although
ifferent hydration process variables were applied [10]. In addi-
ion, the presence of any unburned carbon content (represented by

OI values) might influence the sorption capacity of SO2 and NO.
urthermore, this LOI values together with CeO2 loading and the
ltered silica phases in the RHA might also lead to alter the physi-
al properties of the RHA-based sorbent. Table 4 lists the physical
roperties of the selected RHA/CaO/CeO2 sorbents. It was revealed

able 4
hysical properties of RHA/CaO/CeO2 sorbents.

RHA-based sorbents BET specific surface area (m2/g)

Sorbent E1 89.16
Sorbent D14 84.23
Sorbent E2 95.87
Sorbent D34 92.54
Fig. 5. XRD spectrum of (a) sorbent E1, (b) sorbent D14, (c) sorbent E2 and (d)
sorbent D34.

that the surface area of the sorbent E1 and D14 were slightly lower
than sorbent E2 and D34. Nevertheless, the total pore volume of the
sorbent E1 and D14 shows increment, which is a direct indication
that there is an increase in the porosity of the sorbent. With a higher
porosity, SO2 and NO molecules could penetrate easier within the
sorbent to react and form mainly sulfate and nitrate products [10].
Furthermore, the reaction between SO2/NO and the RHA/CaO/CeO2
sorbent take place mainly in the mesopore region and this has been
widely reported for sorbent prepared from siliceous/calcium-based
materials.

3.4. Comparison of various sorbents sorption capacities

The activity of the optimized sorbents prepared in this study was
compared with other sorbents made from other siliceous materi-

als that have been reported in the literature. Table 5 presents the
comparison of various sorbents sorption capacity. It was shown
that various raw materials had very low sorption capacity as they
could only achieve sorption capacities below 5 mg SO2/g sorbent

Total pore volume (cm3/g) Average pore diameter (nm)

0.29 11.02
0.32 9.89
0.15 16.75
0.17 13.16
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Table 5
Comparison of the sorption capacity of various sorbents with its base materials during 100% removal.

Sorbents BET surface area (m2/g) SO2 sorption (mg/g) NO sorption (mg/g) Reference

Coal fly ash 1.46 0.21 – [39]
Oil palm ash 10.2 0.15 – [40]
Rice husk ash (RHA) 56.31 1.72 – Present study
CaO 8.66 4.29 – Present study
Coal fly ash/Ca(OH)2 21.5 18.9a – [41]
Coal fly ash/CaO/CaSO4 64.5 6.43b – [39]
Oil palm ash/Ca(OH)2/CaSO4 88.3 2.14b – [40]
Oil palm ash/Ca(OH)2/CaSO4 127.7c 7.35b – [42]
RHA/CaO 109.39 17.16a – [7]
RHA/CaO/NaOH – 19.73b – [8]
RHA/CaO/CeO2 (E1) 89.16 46.04b,c 3.67b,c Present study
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a Sorption capacity at highest value.
b Sorption capacity at optimum condition.
c Average value.

nd were unable to remove NO. Conversely, sorbent synthesized
rom RHA was far superior than the other sorbents. In particular,
he RHA/CaO/CeO2 sorbents prepared in this study exhibited very
igh sorption capacity and moreover, it could remove SO2 and NO
imultaneously.

. Conclusions

The parameters optimization for predicting SO2/NO sorption
apacity of RHA/CaO/CeO2 sorbent is successfully carried out with
esponse surface and artificial neural network models. The second-
rder response surface models were adequate to predict the SO2
nd NO sorption capacities within four independent sorbent prepa-
ation variables. The prediction of these models was verified
y neural network models. Response surface models and neural
etwork models were effectively used to find and validate the opti-
um conditions of the hydration process variables for maximizing

he SO2 and NO sorption capacities.
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